Module 5: Molecular Structure Determination and Analysis

Course Syllabus, Policies, and Schedule

Credit Hours: 1
Course meeting days and time: Tuesday/Thursdays 1:00 – 2:20, 11/6/2023 – 12/15/2023
Course locations: Room 101 Biochemistry; 2nd floor Biochemistry Computer Lab

Instructors

Kristin Parent; BMB 829 Course Coordinator and Module 5 Lead Instructor
kparent@msu.edu
510A Biochemistry Building

Josh Vermaas, Module Instructor
vermaasj@msu.edu
1130 Molecular Plant Sciences

Maksymilian Chruszcz, Module Instructor
chruszcz@msu.edu
107 Biochemistry Building

Jian Hu, Module Instructor
hujian1@msu.edu
501A Biochemistry Building

Ben Orlando, Module Instructor
orlandob@msu.edu
502 Biochemistry Building

For all instructors, office hours: By appointment

Outline of Module Topics

Module 1: Introduction to Methods in Biochemistry & Molecular Biology

Module 2: Recombinant DNA & Genome Editing

Module 3: Discovery and Analysis of Molecular Interactions
Module 4: Separation and Analysis of Cells & Biomolecules

Module 5: Molecular Structure Determination and Analysis

Course Description and Objectives

BMB 829 is a modular course that seeks to introduce students to modern molecular and structural/analytical techniques of interest in the biochemistry and molecular biology laboratories. Students may enroll in each of sections 301, 302, 303, 304, and 305 (corresponding to modules 1 through 5) once for a total of up to five credits; however, *Module 1 must be completed before any of the remaining modules can be taken.*

Required Textbook & Course Materials:
No required textbooks; required reading material will be provided by instructors on D2L.

Format:
This course will be taught in-person, with any exceptions announced by the instructor both in class and on D2L. Because of effects of the ongoing COVID pandemic, lectures will be recorded (audio and video feeds) and posted to D2L whenever practicable. These recordings are not a replacement for class attendance, but students are encouraged to make use of them in cases of known or suspected COVID exposure or the observation of symptoms in order to avoid possible viral spread. Note that lecture recordings will not be possible in cases of hands-on workshops, facility visits, or technical difficulties.

Required Technologies:
This course will make extensive use of the D2L platform at Michigan State (d2l.msu.edu) to communicate course materials of various sorts. An internet connection and device capable of downloading documents, displaying Microsoft Word and PowerPoint and Adobe PDF documents and displaying video are required.

Recommended Texts & Other Materials:
Additional recommended reading and viewing materials will be provided on D2L.

COVID-19 Statement:
BMB 829 fully supports and expects compliance with all stated University policies relating to infectious disease safety. Students declining to follow guidelines relating to appropriate viral safety will be asked to leave the classroom.

The BMB 829 instructors are fully cognizant of the difficulties the pandemic has posed for many students. Our goal is to see all of our students succeed despite the ongoing challenges of the pandemic. Should you find yourself in scheduling, academic, or mental or emotional health difficulties, you are urged to contact the current course instructor and Prof. Hoogstraten as soon as possible so that appropriate accommodations may be made. In addition, MSU has made
extensive resources available through the Keep Learning section of the University website, including academics (https://remote.msu.edu/learning/additional-resources.html) and for students facing challenges related to mental health (https://remote.msu.edu/learning/mental-health.html). Students are encouraged to make full use of any or all of these resources as the need arises.

Learning Continuity Statement:
Should students be unable to attend class for an extended period of time, they should communicate this to the Course Coordinator/Module Lead (kparent@msu.edu) as soon possible once the situation becomes evident. Students should work with course instructors to develop a schedule for regular communication and reasonable timelines for completing assignments including exams.

Course Continuity Statement:
Should an instructor be required to be absent for an extended period of time, scheduling of different course modules may be adjusted accordingly. Students may communicate with either the Course Coordinator or any of the other course instructors regarding grading and assessment modifications.

Prerequisites:
Recommended background equivalent to BMB 462. For all modules except Module 1, prior completion of Module 1 is expected.

Late Work Policy:
Full credit for late submissions will only be considered if arranged with the instructor in advance of the due date. Otherwise, point penalties may be assigned or late work may not be accepted at the discretion of the individual instructor. Communication with the instructor about situations leading to late work as soon as possible is strongly advised.

Student Expectations:
All participants in this class are held to the standard set by MSU’s Policy on Integrity of Scholarship and Grades. The policy can be read in full at the MSU Ombudsperson’s website.

On March 22, 2016, The Associated Students of Michigan State University (ASMSU) adopted the following Spartan Code of Honor:

“As a Spartan, I will strive to uphold values of the highest ethical standard. I will practice honesty in my work, foster honesty in my peers, and take pride in knowing that honor is worth more than grades. I will carry these values beyond my time as a student at Michigan State University, continuing the endeavor to build personal integrity in all that I do.”

Disability Access:
Students must inform the instructor and course coordinator at the beginning of the semester, or as soon as reasonably possible after a situation arises during the semester, of any accommodations needed. Information related to disability access is available on the Resource Center for Persons with Disabilities (RCPD) website. Students: to make an appointment with a specialist, call: (517) 353-9642 Or TTY: (517) 355-1293 or visit the RCPD website.
Inclusion in BMB 829:
It is our intention that this class is a safe and productive learning environment for every person. However, we recognize that inclusion is a complex issue and we still have much to learn about and from the diverse backgrounds and perspectives of students. If actions of the instructional team or other students make you feel uncomfortable, please let us know and we will do our best to correct the situation. If you do not feel comfortable discussing this directly, you can reach us through your academic advisor, another student, or another avenue that is more comfortable.

Module Outline and Schedule

Assessments:
Attendance is mandatory. Grading for each module will be based on take-home assignments (40%) and graded assignments of research papers (60%). Letter grades will be assigned at the end of the module and will be curved based on the final distribution of student scores.

Course Outline:
The planned schedule of lecture presentations is presented in the table below, with class meeting number, dates, instructors, and tentative lecture topics.

<table>
<thead>
<tr>
<th>#</th>
<th>Date</th>
<th>Instructor</th>
<th>Topic</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>11/7/2023</td>
<td>Vermaas</td>
<td>Alpha Fold and homology modeling (Pt 1)</td>
<td>Computer lab</td>
</tr>
<tr>
<td>2</td>
<td>11/9/2023</td>
<td>Vermaas</td>
<td>Alpha Fold and homology modeling (Pt 2)</td>
<td>Computer lab</td>
</tr>
<tr>
<td>3</td>
<td>11/14/2023</td>
<td>Parent</td>
<td>What if Alpha Fold doesn’t work—what do we do now?</td>
<td>101 Bch</td>
</tr>
<tr>
<td>4</td>
<td>11/16/2023</td>
<td>Chruszcz</td>
<td>Intro to X-ray Crystallography</td>
<td>101 Bch</td>
</tr>
<tr>
<td>5</td>
<td>11/21/2023</td>
<td>Hu</td>
<td>Analyzing X-ray Crystallography Data</td>
<td>Computer lab</td>
</tr>
<tr>
<td>6</td>
<td>11/23/2023</td>
<td>Hu</td>
<td>NO CLASS-THANKSGIVING BREAK</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>11/28/2023</td>
<td>Orlando</td>
<td>Intro to Cryo-EM (Pt 1)</td>
<td>101 Bch</td>
</tr>
<tr>
<td>8</td>
<td>11/30/2023</td>
<td>Orlando</td>
<td>Intro to Cryo-EM (Pt 2)</td>
<td>Computer lab</td>
</tr>
<tr>
<td></td>
<td>12/5/2023</td>
<td>Parent</td>
<td>Analyzing Structures in 3D (Pt 1)</td>
<td>Computer lab</td>
</tr>
<tr>
<td>9</td>
<td>12/7/2023</td>
<td>Parent</td>
<td>Analyzing Structures in 3D (Pt 2)</td>
<td>Computer lab</td>
</tr>
</tbody>
</table>
There will be for homework assignments and four formal papers to review

<table>
<thead>
<tr>
<th>Assignment</th>
<th>Due Date</th>
<th>pts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alpha Fold Predictions Homework</td>
<td>11/10/2023</td>
<td>10</td>
</tr>
<tr>
<td>Alpha Fold paper review</td>
<td>11/13/2023</td>
<td>15</td>
</tr>
<tr>
<td>Crystallography homework</td>
<td>11/17/2023</td>
<td>10</td>
</tr>
<tr>
<td>Crystallograph paper review</td>
<td>11/20/2023</td>
<td>15</td>
</tr>
<tr>
<td>Cryo-EM homework</td>
<td>12/01/2023</td>
<td>10</td>
</tr>
<tr>
<td>Cryo-EM paper review</td>
<td>12/04/2023</td>
<td>15</td>
</tr>
<tr>
<td>EMDB/PDB scavenger hunt homework</td>
<td>12/08/2023</td>
<td>10</td>
</tr>
<tr>
<td>Atomic modeling paper review</td>
<td>12/11/2023</td>
<td>15</td>
</tr>
</tbody>
</table>

Total points: 100