Course Syllabus: BMB801 – Introduction to Molecular Biology
Fall Semester 2020 Online!

Course Information
Courses meet live on Zoom MWF from 9:10-10:00 am EST.
Course documents and archived material are available on D2L.
Recitations will be held on Tuesdays from 6:00-7:00 pm EST also via Zoom.
Special review sessions by the instructors may also be arranged periodically depending upon student requests.

Note: Zoom software is supported by MSU and is free to students. The Zoom application can be downloaded from https://zoom.us/download.

Zoom Meeting Information
The meeting ID for the MWF lectures is: https://msu.zoom.us/s/92551882139
Password is: 979925
The meeting ID for the Tuesday recitation is: https://msu.zoom.us/j/99571294179
Password is: 777812

Contact Information for Course Instructors
Dr. Bill Henry lectures 1-19 henryrw@msu.edu
Dr. David Arnosti (Course Coordinator) lectures 20-42 arnosti@msu.edu
Noah Goff (Teaching Assistant) goffnoah@msu.edu

We like to use first names for students and instructors; as graduate students you are now peer scientists-in-formation. You may indicate your preferred name (and pronouns, if desired) on your Zoom box to help people address you correctly, e.g. “Bill”, “Noah”, “David (he/his)”.

Course Description & Overview
Welcome to Biochemistry & Molecular Biology 801! The focus of this course is on cellular information management - DNA metabolism and gene expression. We will emphasize “What” we know and “How” we know it for a series of related topics. We also hope that you will come to appreciate “Why” these topics were pursued in the first place by some of the leading scientists who forged critical breakthroughs.

Required Textbook & Course Materials
No course textbook is required. Relevant topics will be covered in the instructors’ notes and slide presentations available on D2L.

Recommended Texts & Other Course Materials
Most course information for this course is derived from the primary literature. For additional background, we recommend Molecular Biology of the Gene (Watson, Baker, Bell, Gann, Levine & Losick) Molecular Biology of the Cell (Alberts, Johnson, Lewis, Raff, Roberts & Walter) or Lewin’s Genes (Krebs, Goldstein & Kilpatrick). We will provide lecture notes, outside papers,
old exams, and class recordings online via D2L. Course lecture notes will be available online for students to read before class. We will aim to have notes available at least a week in advance, so that students can read material before class – an important step for “flipped classrooms”.

To access course material:

* Sign on to “D2L” http://D2L.msu.edu
* Log on with your account name before the @ (e.g. arnosti) + password
 (the course is titled: FS20-BMB-801-001 Molecular Biology)
* Features
 1. Course Syllabus
 2. Course Announcements
 3. Background information on molecular biological techniques
 4. Lecture Notes (PDF format)

Note: For further studies of the primary literature, you will need to obtain your own copies of papers. As an MSU student, you can access most journals that are behind paywalls by going through the MSU library and entering the journal name: https://libguides.lib.msu.edu/eresources/ejournals

Study Groups

Although you will doubtlessly find it useful to review concepts on your own, we strongly encourage all students to also participate in student-organized study groups to discuss more general themes and approaches. We will facilitate introductions to your peers throughout the semester to make getting to know people, and getting together outside of class, easier.

Course Objectives & Expectations

The long-term mission of this course is to enable students to cognitively participate in the modern scientific enterprise. We will accomplish this goal by (1) enhancing your scientific knowledge base and (2) highlighting intellectual approaches to the scientific process. After completion of this course, we expect students should be able to understand biological processes at a molecular level and communicate these details to an audience in a clear and concise manner. We additionally expect that students will begin to apply these principles to novel situations reflective of the scientific exploration process. The material presented in this course is expected to provide a solid foundation for success with comprehensive preliminary exams, expected in the near future for many of you.

Grading

Grades will be based on two oral exams (50%) and written assignments (45%), as well as credit for participation (5%). Two of the written assignments will be crafted in teams with collaboration among team members encouraged. These assignments will follow the general format for a NIH R01 grant submission, but in a much briefer format (5 page max). Details of the written assignments will be provided at a later date. The topic(s) for the individual oral exams will be derived from topics discussed in the class, and the content covered in the written assignments. We will test the student’s knowledge of relevant material, as well as ability to interpret and design experiments. The purpose of using these diverse types of assessment is to provide practice for the second year qualifying exam.
Technical Assistance
If you need technical assistance at any time during the course you can:

* Visit the MSU Help site at http://help.msu.edu
* Visit the Desire2Learn Help Site at http://help.d2l.msu.edu
* Call the MSU IT Service Desk at (517)432-6200, (844)678-6200, or e-mail at ithelp@msu.edu
* Request assistance navigating and requesting instructional design help: https://tech.msu.edu/service-catalog/teaching/instructional-design-development/
* Browser/mobile support for D2L can be found at: https://documentation.brightspace.com/EN/brightspace/requirements/all/browser_support.htm
* Guide for internet speed: https://broadbandnow.com/guides/how-much-internet-speed-do-i-need. For most courses, 25 Mbps should work. If there is no mandatory video component, then students may be able to interact with the course with a slower connection. However, some course activities require access to "high speed" internet.

Additional Policies
1. Attendance & Absences - We will record the classes (not breakout room sessions, however) so that all students can access the presentations and discussions through D2L. We strongly encourage students to attend all class sessions, and a small percentage of the grade will reflect participation. If for any reason you are not able to attend a class, we understand! No need to provide a doctor’s certificate in case of illness.
2. Academic Integrity/Cheating Policy - Your written exercises will represent the efforts of your team; as with all scholarly documents, plagiarism is not acceptable (https://msu.edu/unit/ombud./academic-integrity/plagiarism-policy.html). If you have concerns about the integrity of any work in the class, you can discuss with any of the instructors, or TA, or anonymously by contacting the MSU ombudsperson (https://ombud.msu.edu).
3. Accommodations for Persons with Disabilities - The instructors are here to serve you, and make this course a stepping stone in your professional development. Whether or not you have an officially recognized disability, we will seek to find accommodations for any obstacle to your success.
4. Learning Continuity Statement - If something arises that will interfere with attending on an ongoing basis, please let the instructors know, and we will work to find a solution. In case a student cannot complete the course for medical or other reasons, it is possible to obtain a deferral, allowing completion at a later date.
5. Course Continuity Statement – Bill Henry will supervise the first part of the course, and David Arnosti the latter portion. We will both be present for all classes, and in case of instructor illness will cover for each other. Our TA Noah Goff will also be presenting two lectures, as well as weekly recitations, and will provide backup for the instructors. Communications about the course should normally be directed at the TA and/or the lead instructor for that portion of the course.
<table>
<thead>
<tr>
<th>Lecture #</th>
<th>Date</th>
<th>Instructor</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture 1</td>
<td>Sept 2</td>
<td>Both</td>
<td>Course Introduction*</td>
</tr>
<tr>
<td>Lecture 2</td>
<td>Sept 4</td>
<td>Henry</td>
<td>DNA Structure & Genome Structure**</td>
</tr>
<tr>
<td>Lecture 3</td>
<td>Sept 9</td>
<td>Henry</td>
<td>Centromeres & Telomeres*</td>
</tr>
<tr>
<td>Lecture 4</td>
<td>Sept 11</td>
<td>Henry</td>
<td>DNA Topology**</td>
</tr>
<tr>
<td>Lecture 5</td>
<td>Sept 14</td>
<td>Henry</td>
<td>DNA Topoisomerases*</td>
</tr>
<tr>
<td>Lecture 6</td>
<td>Sept 16</td>
<td>Henry</td>
<td>Chromatin Remodeling I (Covalent Modification)</td>
</tr>
<tr>
<td>Lecture 7</td>
<td>Sept 18</td>
<td>Henry</td>
<td>Chromatin Remodeling II (ATP-dependent) **</td>
</tr>
<tr>
<td>Lecture 8</td>
<td>Sept 21</td>
<td>Henry</td>
<td>DNA Replication I (Introduction & Overview)*</td>
</tr>
<tr>
<td>Lecture 9</td>
<td>Sept 23</td>
<td>Henry</td>
<td>DNA Replication II (Origin Function)</td>
</tr>
<tr>
<td>Lecture 10</td>
<td>Sept 25</td>
<td>Henry</td>
<td>DNA Replication III (DNA Pol Function) **</td>
</tr>
<tr>
<td>Lecture 11</td>
<td>Sept 28</td>
<td>Henry</td>
<td>DNA Replication IV (Licensing)*</td>
</tr>
<tr>
<td>Lecture 12</td>
<td>Sept 30</td>
<td>Henry</td>
<td>DNA Repair I (Base Excision Repair)</td>
</tr>
<tr>
<td>Lecture 13</td>
<td>Oct 2</td>
<td>Goff</td>
<td>DNA Repair II (Nucleotide Excision Repair) **</td>
</tr>
<tr>
<td>Lecture 14</td>
<td>Oct 5</td>
<td>Goff</td>
<td>DNA Repair III (Double strand break Repair)*</td>
</tr>
<tr>
<td>Lecture 15</td>
<td>Oct 7</td>
<td>Henry</td>
<td>DNA Modification I – Restriction & Ligation</td>
</tr>
<tr>
<td>Lecture 16</td>
<td>Oct 9</td>
<td>Henry</td>
<td>Content Discussion & Exam Review**</td>
</tr>
<tr>
<td>Lecture 17</td>
<td>Oct 12</td>
<td>Henry</td>
<td>Mitochondrial DNA Replication*</td>
</tr>
<tr>
<td>Lecture 18</td>
<td>Oct 14</td>
<td>Henry</td>
<td>DNA Analysis & Methods</td>
</tr>
<tr>
<td>Lecture 19</td>
<td>Oct 16</td>
<td>Henry</td>
<td>DNA Modification II - CRISPR**</td>
</tr>
</tbody>
</table>

Midterm Oral Exam (Week of October 12-16, times Arranged)

Lecture 20	Oct 19	Arnosti	Reverse transcriptase and retroviruses*
Lecture 21	Oct 21	Arnosti	Recombination I*
Lecture 22	Oct 23	Arnosti	Recombination II**
Lecture 23	Oct 26	Arnosti	Overview of transcription and methods*
Lecture 24	Oct 28	Arnosti	RNA polymerases, bacterial initiation**
Lecture 25	Oct 30	Arnosti	The lac operon: a half-century of innovation*
Lecture 26	Nov 2	Arnosti	Termination and attenuation**
Lecture 27	Nov 4	Arnosti	Class discussion**
Lecture 28	Nov 6	Arnosti	Transcription: eukaryotes and achaea*
Lecture 29	Nov 9	Arnosti	Eukaryotic RNA polymerases and basal factors**
Lecture 30	Nov 11	Arnosti	Transcriptional activation and repression I*
Lecture 31	Nov 13	Arnosti	Transcriptional activation and repression II**
Lecture 32	Nov 16	Arnosti	Genome-wide and developmental regulation*
Lecture 33	Nov 18	Arnosti	Capping and polyadenylation**
Lecture 34	Nov 20	Arnosti	mRNA splicing I*
Lecture 35	Nov 23	Arnosti	mRNA splicing II**
Lecture 36	Nov 25	Arnosti	mRNA turnover**
Lecture 37	Nov 30	Arnosti	miRNA, piRNA, and RNA interference*
Lecture 38	Dec 2	Arnosti	Translation*
Lecture 39	Dec 4	Arnosti	The ribosome; structure and function**
Lecture 40	Dec 7	Arnosti	Alternative translational codes**
Lecture 41	Dec 9	Arnosti	‘omic analysis of translation*
Lecture 42	Dec 11	Arnosti	Translational regulation**

Final Oral Exam (Week of December 14-18, times Arranged)
Key for Henry and Arnosti Lectures
* - Full lecture days (typically Monday (Henry) or start of new topic (Arnosti))

Topics for Full Lecture
1. Centromeres & Telomeres
2. DNA Topoisomerases
3. DNA Replication - Introduction
4. DNA Replication – Licensing
5. DNA Repair – Recombination Repair Pathways (Goff)
6. Mitochondrial DNA Replication
7. Reverse transcriptase and retroviruses*
8. Recombination I*
9. Overview of transcription and methods*
10. The lac operon: a half-century of innovation*
11. Transcription: eukaryotes and achaear*
12. Transcriptional activation and repression I*
13. Genome-wide and developmental regulation*
14. mRNA splicing I*
15. miRNA, piRNA, and RNA interference*
16. Translation*
17. 'omic analysis of translation*

**- Flipped classroom with student preparation required (typically Friday (Henry))

Topics for Flipped Classroom Experience:
1. DNA Structure & Genome Structure
2. DNA Topology
3. ATP-Dependent Chromatin Remodeling
4. DNA Replication
5. DNA Repair
6. Exam Review
7. DNA Modification – CRISPR
8. Recombination II**
9. RNA polymerases, bacterial initiation**
10. Termination and attenuation**
11. Class discussion**
12. Eukaryotic RNA polymerases and basal factors**
13. Transcriptional activation and repression II**
14. Capping and polyadenylation**
15. mRNA splicing II**
16. mRNA turnover**
17. The ribosome; structure and function**
18. Alternative translational codes**
19. Translational regulation**

(The format for the rest of the lectures not marked with an asterisk will be determined later!)
Due Dates for Written Assignments – upload to D2L before class (Total 45%)

Note: the 2.5% questions are short answer, paragraph-length exercises.

The 15% assignments are 3-5 page ONE SPECIFIC AIM proposals that loosely follow the flow of an NIH grant proposal, but much compressed. They are not intended to take enormous amounts of time and effort, but rather to give you a flavor for the types of thinking and writing that you will use later in your second-year qualifying exam proposals.

1. Chromatin Remodeling – due Sept 18, 2020 ... (2.5%)
2. DNA Repair – due Oct 2, 2020 .. (2.5%)
3. mini-NIH Proposal 1 (DNA Replication) - due Oct 5, 2020 ... (15%)
4. Mitochondrial DNA Replication – due Oct 19 ... (2.5%)
5. Recombination - due Oct 23 .. (2.5%)
6. Transcriptional termination – due November 2 ... (2.5%)
7. mRNA splicing – due November 23 .. (2.5%)
8. mini-NIH Proposal 2 (Gene expression) - due December 7th (15%)