CURRICULUM VITAE

SUNG SOO KIM

E-mail: sskim930@msu.edu

	E man. <u>sakimaso</u>	
EDUCATION	Ph.D.Dept. of Botany, The University of British Columbia (Canada)Supervisor: Prof. Carl J Douglas	2011
	M.Sc. Korea University (Seoul, Korea), Biological science	2002
	B.Sc. Korea University (Seoul, Korea), Dept. of Biology	1998
EXPERIENCE	Postdoctoral Research Associate Dept. of Biochemical and Molecular Biology, Michigan State University • Supervisor: Prof. Dean DellaPenna • Projects: non-polar metabolites transport between organelles	2016 – Present
	Deputy Principal Researcher Dongbu Farm Hannong, South Korea • Projects: Enzyme engineering of herbicide resistant proteins, Development of yeast screening platform, GMO	2015
	Visiting Scholar Jens Nielsen's Lab in Chalmers Univ., Sweden ● Projects: Development of acid-tolerant yeasts	2014
	Research Staff member Samsung Advanced Institute of Technology (SAIT), South Korea • Projects: Synthetic biology for bulk chemical production from renewable resources (e.g. lactic acid, 3-HP and etc.) in microbes by using metabolic engineering and OMICS tools • Representative of research collaboration with VTT Technical Research Centre of Finland and Chalmers University, Sweden • Project manager for GRO (Samsung Global Research Outreach)	2011 – 2014
	Research Scientist R&D Center for Bioproducts, CJ Corp.(CJ Cheiljedang) • Projects: Metabolic engineering of amino acid metabolic pathway to develop threonine-overproducing <i>E.coli</i>	2002 – 2005

VOLUNTEER EXPERIENCE	Peer reviewer • Microbial Cell Factories • FEMS Microbiology Letters	2015 – Present
FELLOWSHIPS AND AWARDS	 Poster award in botany graduate student symposium, UBC Honorable Mention in Plant Biology (ASPB) 2010 	2011
	Duff travel award from Canadian Society of Plant Physiologists	2010
	Graduate study travel award from UBC	2009
	Brain Korea 21 fellowship	2000 - 2002

PUBLICATION

https://scholar.google.com/citations?hl=en&user=ivh5xBIAAAAJ&imq=SungSoo+Kim

Fletcher E, Feizi A, **Kim S**, Siewers V, Nielsen J. RNA-seq analysis of Pichia anomala reveals important mechanisms required for survival at low pH. **Microbial Cell Factories** 14:143 (2015)

Kim SS. Building triketide α -pyrone producing yeast platform using heterologous expression of sporopollenin biosynthetic genes. **Journal of Microbiology and Biotechnology** 25-11: 1796-1800 (2015)

Kim SS, Douglas CJ. Sporopollenin Monomer Biosynthesis in Arabidopsis. **Journal** of Plant Biology 56:1-6 (2013)

Colpitts CC, **Kim SS**, Posehn SE, Jepson C, Kim SY, Wee AH, Douglas CJ, and Suh DY. PpASCL, a moss ortholog of anther-specific chalcone synthase-like enzymes, is a hydroxyl alkylpyrone synthase involved in an evolutionarily conserved sporopollenin biosynthesis pathway. **New Phytologist** 192 (4): 855-868 (2011)

Kim SS*, Grienenberger E*, Lallemand B, Colpitts CC, Kim SY, de Azevedo Souza C, Geoffroy P, Heintz D, Krahn D, Kaiser M, Kombrink E, Heitz T, Suh DY, Legrand M and Douglas CJ LAP6/POLYKETIDE SYNTHASE A and LAP5/POLYKETIDE SYNTHASE B Encode Hydroxyalkyl α -Pyrone Synthases Required for Pollen Development and Sporopollenin Biosynthesis in Arabidopsis thaliana. **Plant Cell** 22: 4045-4066 (2010) (* These authors contributed equally to this work)

Grienenberger E*, **Kim SS***, Lallemand B, Geoffroy P, Heintz D, de Azevedo Souza C, Heitz T, Douglas CJ and Legrand M. (2010) Analysis of TETRAKETIDE α -PYRONE REDUCTASE Function in Arabidopsis thaliana Reveals a Previously Unknown, but

Conserved, Biochemical Pathway in Sporopollenin Monomer Biosynthesis. Plant Cell 22: 4067-4083 (2010)

(* These authors contributed equally to this work)

Souza Cde A, Kim SS, Koch S, Kienow L, Schneider K, McKim SM, Haughn GW, Kombrink E, Douglas CJ. A novel fatty Acyl-CoA Synthetase is required for pollen development and sporopollenin biosynthesis in Arabidopsis. Plant Cell; 21(2):507-25. (2009)

PATENTS	Genetically Engineered Yeast Cell Producing Lactate Including Acetaldehyde Dehydrogenase, Method of Producing Yeast Cell, and Method of Producing Lactate Using the Same (US 9617569B2)	Grant Apr 2017
	Genetically engineered and stress resistant yeast cell with enhanced MSN2 activity and method of producing lactate using the same (US 9598709B2)	Grant Mar 2017
	Yeast cell having reduced ethanol productivity and use of the yeast cell (US 9453246B2)	Grant Sep 2016
	Yeast cell with activated lactate dehydrogenase and method of producing lactate using the yeast cell (US 9416380B2)	Grant Aug 2016
	Microorganism over-expressing lactic acid transporter gene and having inhibitory pathway of lactic acid degradation, and method of producing lactic acid using the microorganism (US 9353388B2)	Grant May 2016
	Modified microorganism for high efficient production of 1,4-butanediol (US 8921083B2)	Grant Dec 2014
	Genetically engineered and acid-resistant yeast cell with enhanced activity of radiation sensitivity complementing kinase and method of producing lactate by using the yeast cell (US 20160024484A1)	Applied 2016
	Yeast cell with inactivated glycerol-3-phosphate dehydrogenase and activated glyceraldehyde-3-phosphate dehydrogenase and method of producing lactate using the same (US 20150152447A1)	Applied 2015
	Cassette including promoter sequence of target gene and method of gene manipulation using the same (US 20140206085A1)	Applied 2014
	A microorganism producing L-threonine having an inactivated lysR gene, method for producing the same and method for producing L-threonine using the microorganism (US 20090298138A1)	Applied 2009

The Inherent properties of enzymes limit substrate accessibility on transorganellar complementation

International Conference of the Korean Society for Molecular and Cellular Biology (KSMCB) 2013

Invited talk

SungSoo Kim

Sporopollenin Monomer Biosynthesis for Arabidopsis Pollen Walls

Plant Biology (ASPB) 2010

Poster

Kim SS, Grienenberger E, Souza Cde A, Lallemand B, Geoffroy P, Heintz D, Heitz T, Legrand M and Douglas CJ.

POLYKETIDE SYNTHASE A and POLYKETIDE SYNTHASE B encode evolutionarily conserved enzymes required for pollen development and sporopollenin biosynthesis in Arabidopsis thaliana.

20th International Conference on Arabidopsis Research 2009

Poster

Sung Soo Kim, de Azevedo Souza Clarice, Stefanie Koch, Lucie Kienow, Katja Schneide, Che Colpitts, Dae-Yeon Suh, Erich Kombrink, Carl J Douglas.

Analysis of the Arabidopsis 4CL-like ACYL-CoA SYNTHETASE5 gene and coexpressed genes reveals an ancient biochemical pathway required for pollen development and sporopollenin biosynthesis.

92nd Canadian Chemistry Conference and Exhibition 2009

Poster

Che C. Colpitts, Sung Soo Kim, Carl J. Douglas and Dea-Yeon Suh.

Towards understanding plant male fertility: The role of anther-specific chalcone synthase-like enzymes.

Banff Conference on Plant Metabolism 2008

Poster

Sung Soo Kim, Clarice Azevedo de Souza, Michael Friedmann, Sarah McKim, George Haughn, Carl J. Douglas.

Genomic analysis of 4CL-like ACYL-CoA SYNTHETASE and co-expressed genes reveals a novel pathway required for pollen wall formation.

7th International Conference on the Biotechnology of Microbial Products 2002

Poster

J.Y. Park, S.S. Kim, B.C. Lee, Y.H. Park.

Use of mini-DNA microarray containing bio-marker genes of metabolic pathway to produce L-threonine from *Escherichia coli*.